超碰av人人澡人人_996精品在线视频_午夜福利在线性视频_伊人大杳蕉久久综合


開關電源歷程與高頻開關電源的組成及分類

1. 電力電子技術的發(fā)展

現(xiàn)代電力電子技術的發(fā)展方向,是從以低頻技術處理問題為主的傳統(tǒng)電力電子學,向以高頻技術處理問題為主的現(xiàn)代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統(tǒng)電力電子技術已經進入現(xiàn)代電力電子時代。

1.1 整流器時代

大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應用得以很大發(fā)展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

1.2 逆變器時代

七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調速的關鍵技術是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)。這時的電力電子技術已經能夠實現(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

1.3 變頻器時代

進入八十年代,大規(guī)模和超大規(guī)模集成電路技術的迅猛發(fā)展,為現(xiàn)代電力電子技術的發(fā)展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉化的標志。據統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術不斷向高頻化發(fā)展,為用電設備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術基礎。

2. 現(xiàn)代電力電子的應用領域

2.1 計算機高效率綠色電源

高速發(fā)展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發(fā)展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

計算機技術的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關的外圍設備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2.2 通信用高頻開關電源

通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關電源及其技術已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現(xiàn)高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3 直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源), 同時還能起到有效地抑制電網側諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

2.4 不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現(xiàn)。

現(xiàn)代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經有0.5kVA、lVA、2kVA、3kVA等多種規(guī)格的產品。

2.5 變頻器電源


變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統(tǒng)中占據的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器, 將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現(xiàn)無級調速。

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節(jié)能等優(yōu)點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發(fā)生產熱點。預計到2000年左右將形成高潮。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調變頻電源研制的進一步發(fā)展方向。
2.6 高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合, 整流濾波后成為穩(wěn)定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數(shù)、多信息的提取與分析,達到預知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調節(jié)范圍5~300A,重量29kg。

2.7 大功率開關型高壓直流電源

大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫(yī)用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發(fā)展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

國內對靜電除塵高壓直流電源進行了研制,市電經整流變?yōu)橹绷?采用全橋零電流開關串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8 電力有源濾波器

傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網側功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數(shù)僅有0.5~0.6。

電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統(tǒng)開關電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;

(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

2.9 分布式開關電源供電系統(tǒng)

分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)?刂萍呻娐纷骰静考,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。

八十年代初期,對分布式高頻開關電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發(fā)展,各種變換器拓撲結構相繼出現(xiàn),結合大規(guī)模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領域不斷擴大。

分布供電方式具有節(jié)能、可靠、高效、經濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3. 高頻開關電源的發(fā)展趨勢

在電力電子技術的應用及各種電源系統(tǒng)中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

3.1 高頻化

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造, 成為“開關變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經濟效益,更可體現(xiàn)技術含量的價值。

3.2 模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七元,包括開關器件和與之反并聯(lián)的續(xù)流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量, 在有限的器件容量的情況下滿足了大電流輸出的要求, 而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復提供充分的時間。

3.3 數(shù)字化

在傳統(tǒng)功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數(shù)字化技術就離不開了。

3.4 綠色化

電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電, 這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產各種綠色開關電源產品奠定了基礎。

現(xiàn)代電力電子技術是開關電源技術發(fā)展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現(xiàn),現(xiàn)代電源技術將在實際需要的推動下快速發(fā)展。在傳統(tǒng)的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發(fā)揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態(tài),從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優(yōu)良的開關電源。

總而言之,電力電子及開關電源技術因應用需求不斷向前發(fā)展,新技術的出現(xiàn)又會使許多應用產品更新?lián)Q代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標志著這些技術的成熟,實現(xiàn)高效率用電和高品質用電相結合。這幾年,隨著通信行業(yè)的發(fā)展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發(fā)研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產值需求的電力操作電源系統(tǒng)的國內市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關電源技術為核心的專用電源、工業(yè)電源正在等待著人們去開發(fā)。


高頻開關電源的組成與分類

開關電源具有體積小、效率高等一系列優(yōu)點,在各類電子產品中得到廣泛的應用。但由于開關電源的控制電路比較復雜、輸出紋波電壓較高,所以開關電源的應用也受到一定的限制。

電子裝置小型輕量化的關鍵是供電電源的小型化,因此需要盡可能地降低電源電路中的損耗。開關電源中的調整管工作于開關狀態(tài),必然存在開關損耗,而且損耗的大小隨開關頻率的提高而增加。另一方面,開關電源中的變壓器、電抗器等磁性元件及電容元件的損耗,也隨頻率的提高而增加。

目前市場上開關電源中功率管多采用雙極型晶體管,開關頻率可達幾十kHz;采用MOSFET的開關電源轉換頻率可達幾百kHz。為提高開關頻率必須采用高速開關器件。對于兆赫以上開關頻率的電源可利用諧振電路,這種工作方式稱為諧振開關方式。它可以極大地提高開關速度,原理上開關損耗為零,噪聲也很小,這是提高開關電源工作頻率的一種方式。采用諧振開關方式的兆赫級變換器已經實用化。

開關電源的集成化與小型化已成為現(xiàn)實。然而,把功率開關管與控制電路都集成在同一芯片上,必須解決電隔離和熱絕緣的問題。

1開關電源的基本構成

開關電源采用功率半導體器件作為開關器件,通過周期性間斷工作,控制開關器件的占空比來調整輸出電壓。開關電源的基本構成如圖1所示,其中DC/DC變換器進行功率轉換,它是開關電源的核心部分,此外還有起動、過流與過壓保護、噪聲濾波等電路。輸出采樣電路(R1、R2)檢測輸出電壓變化,與基準電壓Ur比較,誤差電壓經過放大及脈寬調制(PWM)電路,再經過驅動電路控制功率器件的占空比,從而達到調整輸出電壓大小的目的。圖2是一種電路實現(xiàn)形式。

DC/DC變換器有多種電路形式,常用的有工作波形為方波的PWM變換器以及工作波形為準正弦波的諧振型變換器。

 

對于串聯(lián)線性穩(wěn)壓電源,輸出對輸入的瞬態(tài)響應特性主要由調整管的頻率特性決定。但對于開關型穩(wěn)壓電源,輸入的瞬態(tài)變化比較多地表現(xiàn)在輸出端。提高開關頻率的同時,由于反饋放大器的頻率特性得到改善,開關電源的瞬態(tài)響應問題也能得到改善。負載變化瞬態(tài)響應主要由輸出端LC濾波器特性決定,所以可以利用提高開關頻率、降低輸出濾波器LC乘積的方法來改善瞬態(tài)響應特性。

2開關型穩(wěn)壓電源的分類

開關型穩(wěn)壓電源的電路結構有多種:

(1)按驅動方式分,有自勵式和他勵式。

(2)按DC/DC變換器的工作方式分:①單端正勵式和反勵式、推挽式、半橋式、全橋式等;②降壓型、升壓型和升降壓型等。

(3)按電路組成分,有諧振型和非諧振型。

(4)按控制方式分:①脈沖寬度調制(PWM)式;②脈沖頻率調制(PFM)式;③PWM與PFM混合式。

(5)按電源是否隔離和反饋控制信號耦合方式分,有隔離式、非隔離式和變壓器耦合式、光電耦合式等。

以上這些方式的組合可構成多種方式的開關型穩(wěn)壓電源。因此設計者需根據各種方式的特征進行有效地組合,制作出滿足需要的高質量開關型穩(wěn)壓電源。

 

 


【上一個】 通信開關電源整流器幾種常用散熱方式 【下一個】 LED走入尋常百姓家 替換潮將達頂峰


 ^ 開關電源歷程與高頻開關電源的組成及分類